\(\int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx\) [2946]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 187 \[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=-\frac {18551}{550} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {797}{110} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}-\frac {133 (2+3 x)^{5/2} \sqrt {3+5 x}}{33 \sqrt {1-2 x}}+\frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}-\frac {1289089 E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{500 \sqrt {33}}-\frac {9694 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{125 \sqrt {33}} \]

[Out]

-1289089/16500*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-9694/4125*EllipticF(1/7*21^(1/2)
*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+1/3*(2+3*x)^(7/2)*(3+5*x)^(1/2)/(1-2*x)^(3/2)-133/33*(2+3*x)^(5/2)*(3
+5*x)^(1/2)/(1-2*x)^(1/2)-797/110*(2+3*x)^(3/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)-18551/550*(1-2*x)^(1/2)*(2+3*x)^(1
/2)*(3+5*x)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {99, 155, 159, 164, 114, 120} \[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=-\frac {9694 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{125 \sqrt {33}}-\frac {1289089 E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{500 \sqrt {33}}+\frac {\sqrt {5 x+3} (3 x+2)^{7/2}}{3 (1-2 x)^{3/2}}-\frac {133 \sqrt {5 x+3} (3 x+2)^{5/2}}{33 \sqrt {1-2 x}}-\frac {797}{110} \sqrt {1-2 x} \sqrt {5 x+3} (3 x+2)^{3/2}-\frac {18551}{550} \sqrt {1-2 x} \sqrt {5 x+3} \sqrt {3 x+2} \]

[In]

Int[((2 + 3*x)^(7/2)*Sqrt[3 + 5*x])/(1 - 2*x)^(5/2),x]

[Out]

(-18551*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/550 - (797*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/110
 - (133*(2 + 3*x)^(5/2)*Sqrt[3 + 5*x])/(33*Sqrt[1 - 2*x]) + ((2 + 3*x)^(7/2)*Sqrt[3 + 5*x])/(3*(1 - 2*x)^(3/2)
) - (1289089*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(500*Sqrt[33]) - (9694*EllipticF[ArcSin[Sqrt[3
/7]*Sqrt[1 - 2*x]], 35/33])/(125*Sqrt[33])

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps \begin{align*} \text {integral}& = \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}-\frac {1}{3} \int \frac {(2+3 x)^{5/2} \left (\frac {73}{2}+60 x\right )}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx \\ & = -\frac {133 (2+3 x)^{5/2} \sqrt {3+5 x}}{33 \sqrt {1-2 x}}+\frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}-\frac {1}{33} \int \frac {\left (-\frac {7305}{2}-\frac {11955 x}{2}\right ) (2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx \\ & = -\frac {797}{110} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}-\frac {133 (2+3 x)^{5/2} \sqrt {3+5 x}}{33 \sqrt {1-2 x}}+\frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}+\frac {1}{825} \int \frac {\sqrt {2+3 x} \left (\frac {1029375}{4}+\frac {834795 x}{2}\right )}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx \\ & = -\frac {18551}{550} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {797}{110} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}-\frac {133 (2+3 x)^{5/2} \sqrt {3+5 x}}{33 \sqrt {1-2 x}}+\frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}-\frac {\int \frac {-\frac {36724815}{4}-\frac {58009005 x}{4}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{12375} \\ & = -\frac {18551}{550} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {797}{110} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}-\frac {133 (2+3 x)^{5/2} \sqrt {3+5 x}}{33 \sqrt {1-2 x}}+\frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}+\frac {4847}{125} \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx+\frac {1289089 \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx}{5500} \\ & = -\frac {18551}{550} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {797}{110} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}-\frac {133 (2+3 x)^{5/2} \sqrt {3+5 x}}{33 \sqrt {1-2 x}}+\frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{3 (1-2 x)^{3/2}}-\frac {1289089 E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{500 \sqrt {33}}-\frac {9694 F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{125 \sqrt {33}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 8.22 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.65 \[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=-\frac {10 \sqrt {2+3 x} \sqrt {3+5 x} \left (101763-275587 x+45342 x^2+8910 x^3\right )+1289089 i \sqrt {33-66 x} (-1+2 x) E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-1327865 i \sqrt {33-66 x} (-1+2 x) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{16500 (1-2 x)^{3/2}} \]

[In]

Integrate[((2 + 3*x)^(7/2)*Sqrt[3 + 5*x])/(1 - 2*x)^(5/2),x]

[Out]

-1/16500*(10*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(101763 - 275587*x + 45342*x^2 + 8910*x^3) + (1289089*I)*Sqrt[33 - 66
*x]*(-1 + 2*x)*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (1327865*I)*Sqrt[33 - 66*x]*(-1 + 2*x)*EllipticF[
I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/(1 - 2*x)^(3/2)

Maple [A] (verified)

Time = 1.36 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.27

method result size
default \(-\frac {\left (2503974 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-2578178 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-1251987 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+1289089 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+1336500 x^{5}+8494200 x^{4}-32188470 x^{3}-34376560 x^{2}+2799750 x +6105780\right ) \sqrt {1-2 x}\, \sqrt {3+5 x}\, \sqrt {2+3 x}}{16500 \left (-1+2 x \right )^{2} \left (15 x^{2}+19 x +6\right )}\) \(238\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {27 x \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{20}-\frac {411 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{50}+\frac {816107 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{57750 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {1289089 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{57750 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {-\frac {89425}{88} x^{2}-\frac {339815}{264} x -\frac {17885}{44}}{\sqrt {\left (x -\frac {1}{2}\right ) \left (-30 x^{2}-38 x -12\right )}}+\frac {343 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{96 \left (x -\frac {1}{2}\right )^{2}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(258\)

[In]

int((2+3*x)^(7/2)*(3+5*x)^(1/2)/(1-2*x)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/16500*(2503974*5^(1/2)*7^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(-3-5
*x)^(1/2)-2578178*5^(1/2)*7^(1/2)*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(-3-5
*x)^(1/2)-1251987*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70
^(1/2))+1289089*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticE((10+15*x)^(1/2),1/35*70^(
1/2))+1336500*x^5+8494200*x^4-32188470*x^3-34376560*x^2+2799750*x+6105780)*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(2+3*x)
^(1/2)/(-1+2*x)^2/(15*x^2+19*x+6)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.52 \[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=-\frac {900 \, {\left (8910 \, x^{3} + 45342 \, x^{2} - 275587 \, x + 101763\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 43800583 \, \sqrt {-30} {\left (4 \, x^{2} - 4 \, x + 1\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - 116018010 \, \sqrt {-30} {\left (4 \, x^{2} - 4 \, x + 1\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{1485000 \, {\left (4 \, x^{2} - 4 \, x + 1\right )}} \]

[In]

integrate((2+3*x)^(7/2)*(3+5*x)^(1/2)/(1-2*x)^(5/2),x, algorithm="fricas")

[Out]

-1/1485000*(900*(8910*x^3 + 45342*x^2 - 275587*x + 101763)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) + 438005
83*sqrt(-30)*(4*x^2 - 4*x + 1)*weierstrassPInverse(1159/675, 38998/91125, x + 23/90) - 116018010*sqrt(-30)*(4*
x^2 - 4*x + 1)*weierstrassZeta(1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/91125, x + 23/90)))/
(4*x^2 - 4*x + 1)

Sympy [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((2+3*x)**(7/2)*(3+5*x)**(1/2)/(1-2*x)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=\int { \frac {\sqrt {5 \, x + 3} {\left (3 \, x + 2\right )}^{\frac {7}{2}}}{{\left (-2 \, x + 1\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((2+3*x)^(7/2)*(3+5*x)^(1/2)/(1-2*x)^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(5*x + 3)*(3*x + 2)^(7/2)/(-2*x + 1)^(5/2), x)

Giac [F]

\[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=\int { \frac {\sqrt {5 \, x + 3} {\left (3 \, x + 2\right )}^{\frac {7}{2}}}{{\left (-2 \, x + 1\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((2+3*x)^(7/2)*(3+5*x)^(1/2)/(1-2*x)^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(5*x + 3)*(3*x + 2)^(7/2)/(-2*x + 1)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{7/2} \sqrt {3+5 x}}{(1-2 x)^{5/2}} \, dx=\int \frac {{\left (3\,x+2\right )}^{7/2}\,\sqrt {5\,x+3}}{{\left (1-2\,x\right )}^{5/2}} \,d x \]

[In]

int(((3*x + 2)^(7/2)*(5*x + 3)^(1/2))/(1 - 2*x)^(5/2),x)

[Out]

int(((3*x + 2)^(7/2)*(5*x + 3)^(1/2))/(1 - 2*x)^(5/2), x)